AmplyaAmplya

Multitherapeutic and biotechnological response to treatment of multiple organ failure of acute critical patients. The system performs various types of extracorporeal blood clearance in critical care through a novel personalised and integrated therapeutic approach: a single platform with a myriad of options. Developed and manufactured by Bellco — now part of Medtronic Renal Care Solutions.

Treatment Modes:

SLED – slow extended dialysis SCUF – slow continuous ultrafiltration CVVH – continuous veno-venous haemofiltration CVVHD – continuous veno-venous haemodialysis CVVHDF – continuous veno-venous haemodiafiltration IHF-HVHF – intermittent haemofiltration – high volume haemofiltration IHD – intermittent haemodialysis IHDF – intermittent haemodiafiltration CPFA® - coupled plasma filtration adsorption HP – haemoperfusion* PEX – plasma exchange CASCADE FILTRATION – * ABYLCAP – CO2 removal ABYLCAP HD – CO2 removal with haemodialysis*

 

carpediemCarpediem

Cardio Renal Pediatric  Dialysis Emergency Machine – the right device for the neonatal and pediatric patient with acute kidney injury.

Acute renal failure in neonatal intensive care units reaches incidence percentages ranging between 5% and 20% of the cases observed. CARPEDIEM was designed to offer a truly ‘neonatal’ device: miniature and portable, it responds to the safety and efficacy requirements for renal replacement therapies in neonatal patients. 

CARPEDIEM is the dialysis system for the youngest low weight patients that, in the presence of severe acute conditions, proves to be a valid alternative to peritoneal dialysis. CARPEDIEM is designed to offer a truly dedicated extracorporeal CRRT to low weight patients and responds to the safety and efficacy required for our most fragile and precious patient. CARPEDIEM is intended* for continuous renal replacement therapy (CRRT) for patients weighting 2.5kg or more.

Bibliography

1)   Ronco C, et al. CA.R.PE.DI.E.M. (Cardio-Renal Pediatric Dialysis Emergency Machine): evolution of continuous renal replacement therapies in infants. A personal journey. Pediatr Nephrol 2012;DOI 10.1007/s00467-012-2179-8 2)   Ricci Z, et al. Inotropic support and peritoneal dialysis adequacy in neonates after cardiac surgery. Interact Cardiovasc Thorac Surg 2008; 7:116-20 3)   Moghal N, et al. Management of acute renal failure in the newborn. Semin Fetal Neonatal Med 2006; 11(3):207-13 4)   Alkan T, et al. Postoperative prophylactic peritoneal dialysis in neonates and infants after complex congenital cardiac surgery. ASAIO J 2006; 52:693-7 5)   Liang KV, et al. Use of a novel ultrafiltration device as a treatment strategy for diuretic resistant, refractory heart failure: initial clinical experience in a single center. J Card Fail 2006;12:707-14 6)   Uchino S, et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute Renal Failure in Critically Ill Patients. A Multinational, Multicenter Study. JAMA 2005; 294: 813-8 7)   McNiece KL, et al. Adequacy of peritoneal dialysis in children following cardiopulmonary bypass surgery. Pediatr  Nephrol  2005; 20:972-6 8)   Goldstein SL, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int 2005; 67:653-8 9)   Kellum JA. What can be done about ARF. Minerva Anestesiol 2004; 70:181-8 10) Andreoli SP. Acute renal failure in the newborn. Semin Perinatol. 2004; 28:112-23 11) Foland JA, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit  Care  Med  2004; 32:1771-6 12) Venkataraman R, et al. Clinical review: extracorporeal blood purification in severe sepsis. Critical Care 2003; 7:139-45 13) Drukker A, et al. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr 2002; 14:175-82  14) Daugirdas JT, Blake PG, Ing TS. Lippincott Williams & Wilkins 2001. Acute peritoneal dialysis prescription. Korbet SM. et al. Handbook of dialysis,Third edition. 15) Goldstein SL, et al. Outcome in children receiving continuous veno-venous hemofiltration. Pediatrics 2001; 107:1309-12. 16) Gouyon JB, et al. Management of acute renal failure in newborns. Pediatr Nephrol 2000; 14:1037-44 17) Bokesch PM, et al. Do peritoneal catheters remove pro-inflammatory cytokines after cardiopulmonary bypass in neonates? Ann Thorac Surg 2000; 70:639-43 18) Sorof JM, et al. Early initiation of peritoneal dialysis after surgical repair of congenital heart disease. Pediatr Nephrol 1999; 13:641-5. 19) Feltes TF. Postoperative recovery of congenital heart disease. The Science and Practice of Pediatric Cardiology 1997. 2nd edition, Baltimore MD, Williams & Wilkins 20) Ronco C. Acute renal failure in the neonate: treatment by continuous renal replacement therapy. Update in intensive care and emergency medicine, 1995; Vol. 20, Springer Verlag, Heidelberg, pp. 246-64 21) Vanpee M, et al. Renal function in very low birth weight infants: normal maturity reached during childhood. J Pediatr 1992; 121:784-8 22) Ronco C, et al. Treatment of acute renal failure in newborns by continuous arterio-venous hemofiltration. Kidney Int 1986; 29: 908-15 23) Ronco C, et al. Treatment of acute renal failure in the newborn by continuous arterio- venous hemofiltration. Proc. of the International Symposium on CAVH 24) Ronco C, et al. Treatment of acute renal failure in the newborn by continuous arteriovenous   hemofiltration. Trans Am Soc Artif Intern Organs 1985; 31: 634-8 25) Ronco C, et al. Continuous arteriovenous hemofiltration in newborns.Conf. on CAVH, Aachen 1984, 76-79, Karger Basel, 1985